Zentrum des grönländisches Inlandeises gewinnt an Masse und bewegt sich langsamer als im Durchschnitt der letzten 9000 Jahre

Forscher der University of Texas at Austin hatten im Februar 2016 Erstaunliches zu berichten: Das grönländische Inlandeis bewegt sich heute deutlich langsamer als im Durchschnitt der letzten 9000 Jahre. Hierdurch verdickt sich derzeit der Zentralbereich des grönländischen Eisschildes, während die Ränder schmelzen. Hier die entsprechende Pressemitteilung:

Scientists Map Movement of Greenland Ice During Past 9,000 Years

Scientists have created the first map that shows how the Greenland Ice Sheet has moved over time, revealing that ice in the interior is moving more slowly toward the edges than it has, on average, during the past 9,000 years. The findings, which researchers said don’t change the fact that the ice sheet is losing mass overall and contributing to sea level rise, are published in the Feb. 5 issue of Science. Along Greenland’s periphery, many glaciers are rapidly thinning. However, the vast interior of Greenland is slowly thickening, a process the new study clarifies.

“Scientists are very interested in understanding how ice sheets flow and how that flow may have been different in the past. Our paleo-velocity map for Greenland allows us to assess the flow of the ice sheet right now in the context of the last several thousand years,” said lead author Joe MacGregor of The University of Texas at Austin’s Institute for Geophysics (UTIG), a research unit of the Jackson School of Geosciences. The study builds on earlier UTIG-led research that developed a database of the many layers within Greenland’s ice sheet. Using this database, the scientists determined the flow pattern for the past 9,000 years — in effect creating a “paleo-velocity” map.

The authors identified three causes for this deceleration. First is that snowfall rates were generally higher during the past 9,000 years, second is the slow stiffening of the ice sheet over time, and third is the collapse of an “ice bridge” that used to connect Greenland’s ice to that on nearby Ellesmere Island. Of most interest were the last two. “Like many others, I had in mind the ongoing dramatic retreat and speedup along the edges of the ice sheet, so I’d assumed that the interior was faster now too. But it wasn’t,” said MacGregor.In comparing the paleo-velocity map with modern flow rates, researchers found that the ice sheet’s interior is moving more slowly now than during most of the Holocene, a geological period that began about 11,700 years ago and runs to the present.

“The ice that formed from snow that fell in Greenland during the last ice age is about three times softer than the ice being formed today,” according to William Colgan of York University’s Lassonde School of Engineering, a co-author of the study. Because of this difference, the ice sheet is slowly becoming stiffer. As a consequence, the ice sheet is flowing more slowly and getting thicker over time. This effect is most important in southern Greenland, where higher snowfall rates have led to rapid replacement of ice from the last glacial period with more modern Holocene ice. “But that didn’t explain what was happening elsewhere in Greenland, particularly the northwest, where there isn’t as much snowfall, so the stiffening effect isn’t as important,” said MacGregor.

The explanation of deceleration in the northwest lies in the collapse 10,000 years ago of an “ice bridge” across Nares Strait, which used to connect Greenland’s ice to that on Ellesmere Island. The collapse of the ice bridge at the end of the last ice age led to acceleration in the northwest, but the ice sheet has since returned to a slower pace.

These changes, which started thousands of years ago, affect our understanding of the changing Greenland Ice Sheet even today. Scientists often use GPS and altimeters aboard satellites to measure the elevation of the ice surface and study how much mass is being lost or gained across the ice sheet. When correcting for other known effects on the surface elevation, any leftover thickening is assumed to be due to increasing snowfall, but this study shows that may not be the case. “We’re saying that recent increases in snowfall do not necessarily explain present-day interior thickening,” said Colgan. “If you’re using a satellite altimeter to figure out how much mass Greenland is losing, you’re going to get the answer slightly wrong unless you account for these very long-term signals that are evident in its interior.”

In die gleiche Richtung geht eine Pressemitteilung der University of Illinois vom 4. Mai 2016, die das fehlende Schmelzen im Zentrum des grönländischen Eisschildes diskutiert:

Study finds ice isn’t being lost from Greenland’s interior

Scientists studying data from the top of the Greenland ice sheet have discovered that during winter in the center of the world’s largest island, temperature inversions and other low-level atmospheric phenomena effectively isolate the ice surface from the atmosphere — recycling water vapor and halting the loss or gain of ice. A team of climate scientists made the surprising discovery from three years of data collected at Summit Camp, an arid, glaciated landscape 10,500 feet above sea level in the middle of the Greenland ice sheet. “This is a place, unlike the rest of the ice sheet, where ice is accumulating,” says Max Berkelhammer, assistant professor of earth and environmental sciences at the University of Illinois at Chicago. Berkelhammer is first author on the study, reported in Science Advances, an open-access online publication of the journal Science. Near Greenland’s coasts, Berkelhammer said, “it’s relatively warm, and the ice melts faster and faster.”

“But in the center of the ice sheet, it’s 25 below zero Celsius (-13 F), so it’s always freezing, even if it warms. It’s a very rare occurrence to go above freezing,” he said. The authors note that “despite rapid melting in the coastal regions of the ice sheet, a significant area — approximately 40 percent — rarely experiences surface melting.” Solid ice can be lost not only by melting into liquid water. Under certain conditions, it can vaporize by sublimation, a one-step transition from solid to gas. Such conditions exist at the high-altitude, dry, frigid surface of Greenland’s interior. “Sublimation is common there, unlike other places,” Berkelhammer said. “We looked at the exchange of water between the ice sheet and the air above it through condensation, evaporation, and sublimation.”

At Summit Camp, a 150-foot tower was used to draw air samples at various heights above the surface and pipe the air into a laboratory buried a few feet below the ice. Lasers analyzed the air for two different isotopes of oxygen in H2O, whose ratio indicates the temperature at which the water molecules became airborne. “We noticed a specific process that was occurring, where low-level fog would form right above the surface of the ice sheet,” Berkelhammer said. A fogbow – a rainbow caused by fog – often appeared. “As ice sublimates from the surface, it forms a fog,” he said. “As the particles get heavier and settle back to the surface, you get recycling, rather than dissipation that would remove ice.” In winter, 80 percent of the ice that would otherwise be lost is recycled, Berkelhammer said. “So it’s an incredibly efficient process.”

But many questions remain as to how this boundary-layer recycling contributes to models of climate change. We expected sublimation to increase with temperature, but we find no net loss” of ice over time, Berkelhammer said, again referring just to the interior of the ice mass. “You could say, if this process changes, you’d lose ice significantly faster. Or, if (recycling) becomes even more efficient, you would conserve even more ice mass. “We can’t predict,” he said. “And we don’t know from the ice-core records what the history is.” The next step, he said, is to run experiments to see how sublimation changes with temperature associated with past and future changes in atmospheric carbon dioxide levels, to see how recycling fits into climate models.

“If we want to model how the ice sheet is warming, we need to include everything we know,” he said. “This is a new process to incorporate in models.” But Berkelhammer cautions against over-interpreting the recycling as good news for the ice sheet or the planet, as its overall effect is likely to be relatively minor. “This is small potatoes compared to the calving that’s going on along the coasts,” he said. “Every time we go back to Greenland, the edge of the ice is farther away from the coast.”

An einigen Stellen Grönlands fließt das Eis dann aber doch erstaunlich schnell, wie Wissenschaftler des Geoforschungszentrums (GFZ) Potsdam herausfanden. Grund sind außergewöhnlich heiße Zonen im vulkanisch geprägten Untergrund. Meldung des GFZ vom 4. April 2016:

Erdwärme verursacht schnellen Eisfluss und Gletscherschmelze in Grönland

Die erdgeschichtliche Vergangenheit des Nordatlantik steuert heutigen Eismassenverlust

Wer Grönlands Eismassen von heute untersucht, muss weit in die Erdgeschichte zurück. Unter der Insel finden sich in der Lithosphäre heiße Stellen aus der geologischen Vergangenheit, welche zu einer Schmelze von unterhalb der Eismassen Grönlands führen und das Eis deshalb schnell fließen lassen. In einem breiten Streifen von West nach Ost zieht sich eine Wärmeanomalie mit erhöhtem Wärmefluss aus dem Erdinnern unter Grönland durch. Mit dieser Anomalie erklärt jetzt ein internationales Team von Geowissenschaftlern unter Leitung von Irina Rogozhina und Alexey Petrunin vom Deutschen GeoForschungsZentrum GFZ Beobachtungsdaten aus Radar- und Eisbohrmessungen, die eine weitgefächerte Schmelze unter dem Eisschild und erhöhte Gleitgeschwindigkeiten an der Basis des Eiskörpers zeigen. Diese Schmelze führt zu einem schnellen Eisfluss von Grönlands Gletscher-Gipfelregion über 750 Kilometer bis hin zum Nordatlantik.

Der Nordatlantik ist tektonisch aktiv. Vor 80 bis 35 Millionen Jahren vor heute bewegten die Prozesse der Plattentektonik Grönland über einen Bereich außergewöhnlich heißen Materials im Erdmantel, der heute noch für den Vulkanismus Islands verantwortlich ist. Dieses heiße Gesteinsmaterial dünnte dabei die Lithosphäre unter Grönland aus und heizte sie auf. So entstand eine große geothermische Anomalie unter einem Viertel der Landmasse Grönlands. Diese alte und langlebige Wärmequelle schuf eine Region mit viel Schmelzwasser unterhalb des Gletschers, auf der das Eis bis heute rutschen und sich schnell bewegen kann. Ungefähr die Hälfte der Eiskappe im nördlichen Zentral-Grönland liegt auf aufgetautem Gesteinsbett und leitet sein Schmelzwasser über ein dichtes hydrologisches Netz unter dem Eis in den Ozean.

Das Geoforschungsteam hat hier zum ersten Mal die enge Kopplung von weit in die Erdgeschichte zurückreichenden Prozessen tief im Erdinnern mit eisdynamischen Vorgängen und dem thermo-hydrologischen Verhalten großer Eisdecken nachgewiesen: „Die geothermische Anomalie, die durch den isländischen Mantel-Plume vor über zehn Millionen Jahren entstand, ist ein wichtiger Motor für die heutige Hydrologie unter dem Eisschild und für die Flussgeschwindigkeit des Eises“, erklärt Irina Rogozhina. „Dieses wiederum beeinflusst allgemein das dynamische Verhalten der großen Eisschilde und möglicherweise auch die zukünftige Reaktion auf Klimaänderungen.”

Bisher war die erdgeschichtliche Vergangenheit des Plumes unter Grönland unter der drei Kilometer dicken Eisdecke verborgen. Ihr Geheimnis konnten die Geoforscher konnten nun mit einer innovativen Kombination von Computermodellen und Datensätzen aus Seismologie, Schweremessungen, Bohrungen, Radarmessungen, Eisdickenmessungen am Boden, vom Flugzeug und von Satelliten aus, entschlüsseln. Die Lage und Ausrichtung des Gebiets erhöhten geothermischen Wärmeflusses zeigt, wo Grönland über den heißen Island-Mantelplume wanderte.

Der unerwartete Zusammenhang von Mantelplumes und Eisdecken zeigt, dass die Einwirkungen auf die Eiskappen auf höchst unterschiedlichen Zeitskalen ablaufen, von Langzeitprozessen der Tektonik vor über zehn Millionen Jahren bis hin zu aktuellen Änderungen über die letzten Monate heutiger Klimaentwicklung. Zugleich ergeben die Ergebnisse der Studie nun auch einen unabhängigen Test für die verschiedenen Modellvorstellungen, wie sich der Nordatlantik öffnete, denn dieser tektonische Vorgang wird seit dreißig Jahren diskutiert und ist bis heute noch nicht vollständig geklärt.

Rogozhina, I., Petrunin, A., G. , Vaughan, A., P., M., Steinberger, B., Johnson, J., V., Kaban, M., K., Calov, R., Rickers, F., Thomas, M., Koulakov, I., 2016. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nature Geoscience, Advance Online Publication, 04 April 2016, DOI: 10.1038/NGEO2689

Das Dänische Meteorologische Institut veröffentlicht eine fortwährende Datenreihe zur Eismassenbilanz an der Oberfläche des grönländischen Eisschildes (Surface Mass Balance, SMB). Hier gehen Eiszugänge durch Schneefall und Eisabgänge durch Schmelzen und Sublimation in die Bilanz mit ein, nicht jedoch der Abbruch von Eisbergen an den Küsten. Wenn sich SMB und Eisabbruch die Waage halten, bliebe die Gesamt-Eisbilanz Grönlands stabil. Allerdings überwog in den letzten Jahren der Eisabbruch, so dass das Grönlandeis insgesamt schrumpfte.

Derzeit (Februar 2017) ist ein interessantes Phänomen zu erkennen. Die Oberflächen-Eisbilanz SMB schlägt 2016/17 alle Rekord (blaue Kurve unten) und übertrifft das langjährige Mittel sowie die Werte der Vorjahre bei weitem. Es schneit offenbar wie verrückt. Schafft das Grönlandeis dieses Jar vielleicht die schwarze Null?

Top: The total daily contribution to the surface mass balance from the entire ice sheet (blue line, Gt/day). Bottom: The accumulated surface mass balance from September 1st to now (blue line, Gt) and the season 2011-12 (red) which had very high summer melt in Greenland. For comparison, the mean curve from the period 1990-2013 is shown (dark grey). The same calendar day in each of the 24 years (in the period 1990-2013) will have its own value. These differences from year to year are illustrated by the light grey band. For each calendar day, however, the lowest and highest values of the 24 years have been left out.

 

Das Grönlandeis unterlag schon immer Schwankungen und reagierte auf klimatische Veränderungen. Meredith Kelly und Thomas Lowell haben 2009 in einem Artikel die Geschichte des Grönlandeises für die letzten 12.000 Jahre skizziert. Darin dokumentieren sie, dass die meisten lokalen grönländischen Gletscher während des sogenannten holozänen thermischen Maximums vor 8000 bis 5000 Jahren viel kürzer als heute oder sogar ganz verschwunden waren. Im Text heißt es dazu im Original:

Subsequent to late-glacial or early Holocene time, most local glaciers were smaller than at present or may have disappeared completely during the Holocene Thermal Maximum

Abschließend die Aufklärung eines Mißverständnisses. Der Potsdamer Klimaforscher Stefan Rahmstorf wärmt in großer Regelmäßigkeit einen alten Versprecher von Fritz Vahrenholt auf, wobei das Grönlandeis während der Mittelalterlichen Wärmeperiode (MWP) angeblich komplett abgeschmolzen gewesen sein soll. Dabei handelt es sich wirklich um einen Versprecher, der in der Hektik eines Interviews schon einmal passieren kann – nobody ist perfekt. Gemeint waren natürlich geschrumpfte Gletscher, eine Folge der hohen Temperaturen vor 1000 Jahren. Die entsprechenden Studien haben wir feinsäuberlich in unserem Kartierprojekt zur MWP aufgeführt (Online-Karte hier). Auch in unserem Buch ist nichts von einem Komplettschmelzen zur MWP-Zeit oder selbst während des letzten Interglazials vor 115.000 Jahren zu lesen. Im Buch heißt es wörtlich auf Seite 186:

Es wird daher angenommen, dass das ostantarktische Eis wohl auch die aktuelle Klimaerwärmung weitgehend unbeschadet überleben wird. Ähnliches gilt für den grönländischen Eispanzer, der während der letzten Zwischeneiszeit vor 120.000 Jahren ebenfalls nicht verschwunden ist, wobei es bis zu 5 °C wärmer war als heute.

Vielleicht wird es Herrn Rahmstorf irgendwann ja von selbst langweilig. Jedenfalls können Sie ihn in der Kommentarspalte dann das nächste mal auf diesem Blogartikel verweisen, der für alle Klarheit bringen sollte.