Vor einigen Jahren beschrieb Henrik Svensmark einen Mechanismus, bei dem solare Aktivitätsschwankungen die Wolkenbedeckung verändern. War dies der gesuchte Solarverstärker? Der vorgeschlagene Prozess enthält eine Reihe von Zwischenschritten, wobei das Sonnenmagnetfeld die kosmische Strahlung mal mehr und mal weniger stark abschirmt, also moduliert. Die kleinen galaktischen Teilchen sollen dann als Kondensationskeime für Wolken dienen. Der Mechanismus leuchtet im Großen und Ganzen ein, und Svensmark konnte zunächst eine schöne Korrelation der Sonnenaktivität mit den Wolken liefern. Dann allerdings liefen die Kurven auseinander. Es war wohl doch etwas komplizierter. Der IPCC freute sich und verwarf das Modell kurzerhand. Vermutlich vorschnell, denn Stück für Stück wird nun allmählich klarer, dass man stärker differenzieren muss: Zwischen verschiedenen Breitengraden, Wolkenstockwerken, Jahreszeiten. Im Folgenden wollen wir für Sie das Neueste zum Wolken-Solarverstärker zusammenfassen.
Im November 2014 berichteten M. Kancirova und K. Kudela in Atmospheric Research über eine Studie zur Entwicklung der Wolkenbedeckung und der kosmischen Strahlen auf einem 2634 m hohen Berg in der Slovakei für den Zeitraum 1982–2010. Die Autoren fanden dabei eine stabile Korrelation zwischen Wolken und kosmischer Strahlung, wenn auch schwach ausgeprägt. Hier der Abstract:
Cloud cover and cosmic ray variations at Lomnický štít high altitude observing site
We studied the relation of cloud cover and cosmic rays during the period 1982–2010 measured at Lomnický štít (2634 m above sea level, in the direction of 49.40°N, 20.22°E, geomagnetic vertical cut-off rigidity for cosmic ray ~ 3.85 GV). Daily means are used. It is seen that the correlations are insignificant for averaging shorter than about one year. We have found weak positive correlation for longer averaging times. Difference in distributions of cosmic ray intensity between the days with cloudless and overcast sky level at α = 0.05 is found in the data. In addition to the experiments and clarification of physical mechanisms behind the relations studied here, longer time intervals and analysis at different sites with respect to cut-off rigidity and sea/continents along with the satellite data are important for progress in understanding the cosmic ray–cloud relation questions, at least from the point of view of empirical description of the dependencies.
Im Januar 2015 legten Badruddin & Aslam dann im Journal of Atmospheric and Solar-Terrestrial Physics nach. Sie studierten den Einfluss der kosmischen Strahlung auf den Indischen Sommermonsun. Und sie wurde fündig: Dürrephasen ereigneten sich überwiegend wenn die kosmische Strahlung abnahm, während feuchte Phasen mit zunehmender kosmischer Strahlung gepaart waren. Zudem fanden sie einen Zusammenhang mit der Temperatur. Hier die Kurzfassung:
Influence of cosmic-ray variability on the monsoon rainfall and temperature
We study the role of galactic cosmic ray (GCR) variability in influencing the rainfall variability in Indian Summer Monsoon Rainfall (ISMR) season. We find that on an average during ‘drought’ (low ISMR) periods in India, GCR flux is decreasing, and during ‘flood’ (high ISMR) periods, GCR flux is increasing. The results of our analysis suggest for a possibility that the decreasing GCR flux during the summer monsoon season in India may suppress the rainfall. On the other hand, increasing GCR flux may enhance the rainfall. We suspect that in addition to real environmental conditions, significant levitation/dispersion of low clouds and hence reduced possibility of collision/coalescence to form raindrops suppresses the rainfall during decreasing GCR flux in monsoon season. On the other hand, enhanced collision/coalescence efficiency during increasing GCR flux due to electrical effects may contribute to enhancing the rainfall. Based on the observations, we put forward the idea that, under suitable environmental conditions, changing GCR flux may influence precipitation by suppressing/enhancing it, depending upon the decreasing/increasing nature of GCR flux variability during monsoon season in India, at least. We further note that the rainfall variability is inversely related to the temperature variation during ISMR season. We suggest an explanation, although speculative, how a decreasing/increasing GCR flux can influence the rainfall and the temperature. We speculate that the proposed hypothesis, based on the Indian climate data can be extended to whole tropical and sub-tropical belt, and that it may contribute to global temperature in a significant way. If correct, our hypothesis has important implication for the sun – climate link.
Weiterhin erwähnenswert ist eine Arbeit von L.Z. Biktash im Dezember 2014 in Advances in Space Research. In dieser Studie geht es ebenfalls um die kosmische Strahlung und ihr Bezug zur globalen Temperatur. Für die Phase 1965–2012 sollen sich die Temperaturmaxima während der Minima der kosmischen Strahlung ereignet haben. Hier die Kurzfassung:
Evolution of Dst index, cosmic rays and global temperature during solar cycles 20–23
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.
Im Text der Arbeit heißt es:
„We demonstrate that the detrended annual means of global surface air temperature in 1965–2012 show the maxima during CRs [Cosmic Rays] and Dst index [of the solar wind] minima. It proves that CRs [Cosmic Rays] play essential role in climate change and main part of climate variations can be explained by Pudovkin and Raspopov’s (1992) mechanism of action CRs [Cosmic Rays] modulated by the solar activity on the state of lower atmosphere and meteorological parameters. Following this we have to seek for another ways of looking for global warming reason, first of all, as a man impact on climate.“
Eine Gruppe um Nicolas Huneeus überraschte im Mai 2014 im Journal of Geophysical Research mit einer etwas versteckten Bestätigung des Sonne-Wolken-Bezugs. Im Rahmen von Modellierungen fanden sie eine bedeutende Beeinflussung der Wolken durch solare Aktivitätsschwankungen. Lesen Sie selbst im Abstract:
Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2
The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.
Hochinteressant auch die Studie einer Forscherguppe um Mai Mai Lam, die ihre Ergebnisse im September 2014 in den Geophysical Research Letters publizierte.