Der Weltklimarat geht davon aus, dass das Kohlendioxid eine sehr starke Klimawirkung besitzt. Allerdings beträgt die real gemessene Erwärmung der letzten 150 Jahre lediglich 40% von dem, was aufgrund der vom IPCC angenommenen CO2-Klimasensitivität zu erwarten gewesen wäre. Bereits vor drei Jahren (2010) wies ein US-amerikanisches-schwedisches Forscherteam um Stephen Schwartz vom Brookhaven National Laboratory in einem Artikel im Journal of Climate auf diese bedeutende Diskrepanz hin. Bei der Analyse möglicher Gründe fanden Schwartz und Kollegen, dass hierfür entweder eine vom IPCC zu hoch angesetzte CO2-Klimasensitivität verantwortlich zeichnet oder die kühlende Wirkung von anthropogenen Aerosolen von den Weltklimaratsmitgliedern überschätzt wurde. Derartige Schwefelemissionen wurden in den vergangenen Jahren gerne als Kühlungsjoker präsentiert, unter anderem vom Hockeystick-Erfinder Michael Mann.
Neuere Untersuchungen erteilen dem Aerosol-Joker nun jedoch eine klare Absage. In einer Pressemitteilung vom 9. Mai 2013 lässt das Max-Planck-Institut für Chemie in Mainz keinen Zweifel daran, dass die Klimamodelle die Kühlwirkung der Aerosole wohl bislang deutlich überschätzt haben, so dass gemäß der Schwartz-Studie nun wohl doch alles auf eine reduzierte Klimasensitivität hinweist. Im Folgenden die vollständige MPI-Pressemitteilung:
——————————————————-
Sulfat-Aerosole kühlen das Klima weniger als gedacht
Lebensdauer wolkenbildender Sulfat-Partikel in der Luft geringer als angenommen: Ursache ist eine in bisherigen Klimamodellen unbeachtete Oxidation von Schwefeldioxid
Schwefeldioxid ist als Gegenspieler der Treibhausgase offenbar weniger effektiv als bisher angenommen. Aus ihm entstehen in der Luft Sulfat-Aerosolpartikel, die das Sonnenlicht reflektieren und als sogenannte Wolkenkondensationskeime die chemischen Vorgänge in Wolken beeinflussen. Sulfat-Aerosolpartikel helfen also, die Erde zu kühlen. Sie sind deshalb ein wesentlicher Bestandteil vieler Klimamodelle. Wie ein Team um Forscher des Max-Planck-Instituts für Chemie in Mainz nun jedoch herausfand, ist es wahrscheinlich, dass die meisten Modelle bei ihren Vorhersagen den Kühlungseffekt dieser Partikel überschätzt haben. Grund ist ein bisher weitgehend unberücksichtigter Reaktionsweg in den Wolken, den Mineralstaub katalysiert und der die Lebensdauer von Sulfat-Aerosolpartikeln und deren Fähigkeit, Sonnenlicht zu reflektieren, stark beeinflusst.
Als Kondensationskeime sind Aerosolpartikel ein wichtiger Ausgangspunkt für die Bildung von Wolken. Luftfeuchtigkeit lagert sich an ihnen an, und es entstehen kleine Tropfen, die schließlich zu Wolken werden. In den Wolken selbst jedoch verändert sich die chemische Zusammensetzung der Aerosolpartikel.
Um herauszufinden, was sich dort genau abspielt und warum, untersuchten Dr. Eliza Harris und Dr. Bärbel Sinha vom Max-Planck-Institut für Chemie gemeinsam mit weiteren Wissenschaftlern aus Mainz und anderer Institute verschiedene Luftmassen. Das Besondere: Sie beobachteten eine Wolke, die sich an einem Berg aufstaute, während sie sich bildete. Auf diese Weise verfolgten sie die Veränderung der Aerosolbestandteile im Laufe der Wolkenentstehung.
Isotopen-Analyse verrät, wie Sulfat entsteht
Harris und Sinha richteten dabei ihr Hauptaugenmerk auf die Analyse von Schwefelverbindungen. Deren Zusammensetzung untersuchten sie anhand von Luftproben, die zu unterschiedlichen Zeitpunkten genommen wurden: Vor dem Eintauchen in die Wolke, während des Aufenthalts in der Wolke und nachdem sie die Wolke wieder verlassen hatten.
Die Schwefelverbindungen in den Proben unterschieden sich in der Verteilung der Schwefelisotope. Isotope sind Atome desselben Elements mit einer unterschiedlichen Anzahl an Neutronen im Atomkern und lassen sich mit einem Massenspektrometer unterscheiden. Mithilfe der NanoSIMS-Ionensonde, eines besonders hochempfindlichen Massenspektrometers, konnte das Forscherteam sogar, Rückschlüsse auf die chemischen Abläufe ziehen. „Die relativen Reaktionsraten von Isotopen sind wie Fingerabdrücke, die verraten, auf welchem Weg das Sulfat aus dem Schwefeldioxid entstanden ist“, erklärt Eliza Harris ihre Untersuchungsmethode, die Teil ihrer Doktorarbeit in der Forschungsgruppe von Peter Hoppe am Max-Planck-Institut für Chemie war.
Rolle von Übergangsmetallionen bei der Bildung von Sulfat-Aerosolen bisher unterschätzt
Harris‘ Studie offenbart, dass der wichtigste Weg der Sulfatbildung in den meisten Klimamodellen bisher offenbar übersehen wurde. Ihren Messungen zufolge entstehen Sulfate in Wolken am häufigsten über die Oxidation von Schwefeldioxid (SO2) mit Sauerstoff (O2). Diese Reaktion wird durch sogenannte Übergangsmetallionen, kurz TMI für „transition metal ion“, wie Eisen, Mangan, Titan oder Chrom, katalysiert. Zudem traten die Sulfate meistens in Wolkentropfen auf, die sich auf großen Mineralstaubpartikeln, den wichtigsten Lieferanten der Übergangsmetallionen, gebildet hatten. Sehr viel seltener führte die Spur zur Oxidation von Schwefeldioxid mit Wasserstoffperoxid (H2O2) und Ozon (O3).
„Als meine Kollegen und ich mit diesem Ergebnis auf die grundlegenden Annahmen der Klimamodelle blickten, waren wir sehr erstaunt. Denn nur eines von zwölf Modellen berücksichtigt die Rolle der Übergangsmetallionen bei der Sulfatbildung“, so die Wissenschaftlerin, die mittlerweile am Massachusetts Institute of Technology (MIT) in den USA arbeitet. Stattdessen verwendeten die meisten Modelle den alternativen Fall der Schwefeldioxidoxidation durch Wasserstoffperoxid (H2O2), Ozon (O3) und das Hydroxyl-Radikal (OH).
Da Sulfat, das katalytisch durch Übergangsmetallionen gebildet wird, an der Oberfläche relativ großer Mineralstaubpartikel entsteht, sind diese größer als diejenigen, die aus der Reaktion mit Wasserstoffperoxid entstehen. Aufgrund ihrer Größe fallen sie – bedingt durch die Schwerkraft – schneller wieder nach unten. Somit könnte der Zeitraum, in dem sie sich kühlend auf das Klima auswirken können, kürzer sein als bisher vielfach angenommen wurde.
In China und Indien ist ein deutlicher Effekt zu erwarten
Eliza Harris geht deshalb davon aus, dass die bisherigen Prognosen die kühlenden Eigenschaften der Sulfat-Aerosole auf das Klima überschätzen. Bisher lässt sich jedoch noch nicht quantifizieren, welche Auswirkungen Harris‘ Entdeckung auf die Klimaprognosen haben wird. Zukünftige Modelle sollten die TMI-Katalyse allerdings als wichtigen Reaktionsweg der SO2-Oxidation berücksichtigen, so die Forscherin. Zwar schätzt sie die Auswirkungen auf die Klimaprognosen für europäische Regionen als eher gering ein, da hier nur wenig Mineralstaub in der Luft vorliege und der Schwefeldioxidausstoß kontinuierlich auf dem Rückzug sei. „In Indien und China jedoch, wo mit steigenden SO2-Emissionen in der Zukunft zu rechnen ist und zudem erheblich mehr Staub in der Luft ist, könnte sich ein deutlicherer Effekt abzeichnen“, vermutet sie. Weitere Studien werden es zeigen.
An den Ergebnissen der nun in der Zeitschrift Science veröffentlichten Studie waren neben dem Max-Planck-Institut für Chemie in Mainz das Leibniz-Institut für Troposphärenforschung in Leipzig, das Department of Atmospheric Science an der Colorado State University, das Earth System Science Research Centre des Instituts für Geowissenschaften der Universität Mainz und das Institut für Physik der Atmosphäre der Universität Mainz beteiligt. Die Wolkenproben wurden im Rahmen der internationalen Messkampagne „The Hill Cap Cloud Thuringia“ (HCCT-2010) im Thüringer Wald genommen.
Erst kürzlich wurde Eliza Harris als jüngste Doktorandin der Max-Planck-Gesellschaft des Jahres 2012 mit dem Dieter-Rampacher-Preis ausgezeichnet.